Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(5): 1122-1132.e5, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38309271

RESUMO

Social insects' nests harbor intruders known as inquilines,1 which are usually related to their hosts.2,3 However, distant non-social inquilines may also show convergences with their hosts,4,5 although the underlying genomic changes remain unclear. We analyzed the genome of the wingless and blind bee louse fly Braula coeca, an inquiline kleptoparasite of the western honey bee, Apis mellifera.6,7 Using large phylogenomic data, we confirmed recent accounts that the bee louse fly is a drosophilid8,9 and showed that it had likely evolved from a sap-breeder ancestor associated with honeydew and scale insects' wax. Unlike many parasites, the bee louse fly genome did not show significant erosion or strict reliance on an endosymbiont, likely due to a relatively recent age of inquilinism. However, we observed a horizontal transfer of a transposon and a striking parallel evolution in a set of gene families between the honey bee and the bee louse fly. Convergences included genes potentially involved in metabolism and immunity and the loss of nearly all bitter-tasting gustatory receptors, in agreement with life in a protective nest and a diet of honey, pollen, and beeswax. Vision and odorant receptor genes also exhibited rapid losses. Only genes whose orthologs in the closely related Drosophila melanogaster respond to honey bee pheromone components or floral aroma were retained, whereas the losses included orthologous receptors responsive to the anti-ovarian honey bee queen pheromones. Hence, deep genomic convergences can underlie major phenotypic transitions during the evolution of inquilinism between non-social parasites and their social hosts.


Assuntos
Drosophila , Ftirápteros , Abelhas/genética , Animais , Drosophila/genética , Drosophila melanogaster/genética , Ftirápteros/genética , Receptores de Superfície Celular/genética , Genes de Insetos , Feromônios
2.
Insect Biochem Mol Biol ; 165: 104059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101706

RESUMO

Blood feeding is a secondary adaptation in hematophagous bugs. Many proteins are secreted in the saliva that are devoted to coping with the host's defense and to process the blood meal. Digestive enzymes that are no longer required for a blood meal would be expected to be eventually lost. Yet, in many strictly hematophagous arthropods, α-amylase genes, which encode the enzymes that digest starch from plants, are still present and transcribed, including in the kissing bug Rhodnius prolixus (Hemiptera, Reduviidae) and its related species, which transmit the Chagas disease. We hypothesized that retaining α-amylase could be advantageous if the bugs occasionally consume plant tissues. We first checked that the α-amylase protein of Rhodnius robustus retains normal amylolytic activity. Then we surveyed hundreds of gut DNA extracts from the sylvatic R. robustus to detect traces of plants. We found plant DNA in 8% of the samples, mainly identified as Attalea palm trees, where R. robustus are usually found. We suggest that although of secondary importance in the blood-sucking bugs, α-amylase may be needed during occasional plant feeding and thus has been retained.


Assuntos
Doença de Chagas , Rhodnius , Triatoma , Animais , Rhodnius/genética , DNA , Triatoma/genética , alfa-Amilases/genética
3.
Nat Commun ; 14(1): 838, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792581

RESUMO

Asgard archaea include the closest known archaeal relatives of eukaryotes. Here, we investigate the evolution and function of Asgard thymidylate synthases and other folate-dependent enzymes required for the biosynthesis of DNA, RNA, amino acids and vitamins, as well as syntrophic amino acid utilization. Phylogenies of Asgard folate-dependent enzymes are consistent with their horizontal transmission from various bacterial groups. We experimentally validate the functionality of thymidylate synthase ThyX of the cultured 'Candidatus Prometheoarchaeum syntrophicum'. The enzyme efficiently uses bacterial-like folates and is inhibited by mycobacterial ThyX inhibitors, even though the majority of experimentally tested archaea are known to use carbon carriers distinct from bacterial folates. Our phylogenetic analyses suggest that the eukaryotic thymidylate synthase, required for de novo DNA synthesis, is not closely related to archaeal enzymes and might have been transferred from bacteria to protoeukaryotes during eukaryogenesis. Altogether, our study suggests that the capacity of eukaryotic cells to duplicate their genetic material is a sum of archaeal (replisome) and bacterial (thymidylate synthase) characteristics. We also propose that recent prevalent lateral gene transfer from bacteria has markedly shaped the metabolism of Asgard archaea.


Assuntos
Archaea , Eucariotos , Archaea/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Filogenia , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Bactérias/genética , Bactérias/metabolismo , Aminoácidos/metabolismo , Ácido Fólico/metabolismo , DNA/metabolismo
4.
Am J Trop Med Hyg ; 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35576947

RESUMO

The genome size of five Rhodnius species (R. milesi, R. nasutus, R. neivai, R. prolixus, and R. robustus) and two Psammolestes species (P. coroedes and P. tertius) were estimated using flow cytometry and/or k-mer distributions in genome sequences. Phylogenetic generalized linear mixed models highlighted significant genome size variations among species and between sexes, with R. prolixus showing the largest genome. In this study we provide the first data on female genome size in Triatominae. For five species, female genome size did not differ from males, except for R. robustus, where females had smaller genomes. Genome size estimations based on the k-mer distribution method were less than those estimated from flow cytometry, but both methods exhibited the same pattern of sexual differences. Further genomic studies are needed to infer whether genome size variation could be an adaptive trait in Rhodnius.

5.
Mob DNA ; 12(1): 24, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715903

RESUMO

BACKGROUND: With the expansion of high throughput sequencing, we now have access to a larger number of genome-wide studies analyzing the Transposable elements (TEs) composition in a wide variety of organisms. However, genomic analyses often remain too limited in number and diversity of species investigated to study in depth the dynamics and evolutionary success of the different types of TEs among metazoans. Therefore, we chose to investigate the use of transcriptomes to describe the diversity of TEs in phylogenetically related species by conducting the first comparative analysis of TEs in two groups of polychaetes and evaluate the diversity of TEs that might impact genomic evolution as a result of their mobility. RESULTS: We present a detailed analysis of TEs distribution in transcriptomes extracted from 15 polychaetes depending on the number of reads used during assembly, and also compare these results with additional TE scans on associated low-coverage genomes. We then characterized the clades defined by 1021 LTR-retrotransposon families identified in 26 species. Clade richness was highly dependent on the considered superfamily. Copia elements appear rare and are equally distributed in only three clades, GalEa, Hydra and CoMol. Among the eight BEL/Pao clades identified in annelids, two small clades within the Sailor lineage are new for science. We characterized 17 Gypsy clades of which only 4 are new; the C-clade largely dominates with a quarter of the families. Finally, all species also expressed for the majority two distinct transcripts encoding PIWI proteins, known to be involved in control of TEs mobilities. CONCLUSIONS: This study shows that the use of transcriptomes assembled from 40 million reads was sufficient to access to the diversity and proportion of the transposable elements compared to those obtained by low coverage sequencing. Among LTR-retrotransposons Gypsy elements were unequivocally dominant but results suggest that the number of Gypsy clades, although high, may be more limited than previously thought in metazoans. For BEL/Pao elements, the organization of clades within the Sailor lineage appears more difficult to establish clearly. The Copia elements remain rare and result from the evolutionary consistent success of the same three clades.

6.
Genome Biol Evol ; 12(6): 931-947, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396626

RESUMO

The germlines of metazoans contain transposable elements (TEs) causing genetic instability and affecting fitness. To protect the germline from TE activity, gonads of metazoans produce TE-derived PIWI-interacting RNAs (piRNAs) that silence TE expression. In Drosophila, our understanding of piRNA biogenesis is mainly based on studies of the Drosophila melanogaster female germline. However, it is not known whether piRNA functions are also important in the male germline or whether and how piRNAs are affected by the global genomic context. To address these questions, we compared genome sequences, transcriptomes, and small RNA libraries extracted from entire testes and ovaries of two sister species: D. melanogaster and Drosophila simulans. We found that most TE-derived piRNAs were produced in ovaries and that piRNA pathway genes were strongly overexpressed in ovaries compared with testes, indicating that the silencing of TEs by the piRNA pathway mainly took place in the female germline. To study the relationship between host piRNAs and TE landscape, we analyzed TE genomic features and how they correlate with piRNA production in the two species. In D. melanogaster, we found that TE-derived piRNAs target recently active TEs. In contrast, although Drosophila simulans TEs do not display any features of recent activity, the host still intensively produced silencing piRNAs targeting old TE relics. Together, our results show that the piRNA silencing response mainly takes place in Drosophila ovaries and indicate that the host piRNA response is implemented following a burst of TE activity and could persist long after the extinction of active TE families.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Drosophila simulans/genética , RNA Interferente Pequeno/biossíntese , Animais , Drosophila melanogaster/metabolismo , Drosophila simulans/metabolismo , Feminino , Masculino , Ovário/metabolismo , Caracteres Sexuais , Testículo/metabolismo
7.
Acta Trop ; 201: 105188, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31545949

RESUMO

Triatoma petrocchiae is the newly member of the Triatoma brasiliensis species complex. This species overlaps with T. brasiliensis in geographic and ecotypic occupation in the sylvatic habitat because both inhabit rocky outcrops in the semi-arid portion of Brazilian northeast. In this region T. brasiliensis is the most important Chagas disease vector because it constantly colonizes domiciles. In contrast, T. petrocchiae is rarely found in peri or intradomiciliary habitats - reason why little is known about this species. Therefore, Here, we present information for the first time on. the T. petrocchiae ecotopes, genetic diversity, Trypanosoma cruzi prevalence/genotyping in comparison to T. brasiliensis. We found T. brasilensis (N = 223) and T. petrocchiae (N = 69) in co-habitation in rocky outcrops in three Districts of Paraíba and Rio Grande do Norte states. Forty-tree T. petrocchiae insects of eleven sampling spots (composing three geographic populations) were genotyped for the mitochondrial Cyt B gene and little geographic structure was observed. Tajima's D test suggested that species is evolving toward a mutation-drift equilibrium in our collection range. Sylvatic T. petrocchiae had 4% (3/68) of infected insects by T. cruzi, whereas T. brasiliensis had 26% (59/223). Fluorescent Fragment Length Barcoding demonstrated that all three T. petrocchiae harbored TcI whereas T. brasiliensis had TcI, but also TcIII, TcII/TcVI and T. rangeli genotype A, sometimes under mixed infections. None of infected T. petrocchiae were carrying mixed infections. However, this result should be confirmed using a larger pool of infected bugs. We here presented the first documentation of T. rangeli infecting T. brasiliensis. The finding of infected T. petrocchiae calls for constant vector monitoring because the epidemiologic scenario is dynamic and sylvatic vectors are progressively found in adaptation to anthropic environments.


Assuntos
Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Simpatria , Triatoma/parasitologia , Trypanosoma cruzi/genética , Animais , Brasil/epidemiologia , Doença de Chagas/epidemiologia , Ecossistema , Variação Genética , Genótipo , Epidemiologia Molecular , Prevalência
8.
Genome Biol Evol ; 11(8): 2203-2207, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364706

RESUMO

The maize stalk borer, Busseola fusca, is an important Lepidopteran pest of cereal crops in Central, East, and Southern Africa. Crop losses due to B. fusca feeding activity vary by region, but can result in total crop loss in areas with high levels of infestation. Genomic resources provide critical insight into the biology of pest species and can allow for the development of effective management tools and strategies to mitigate their impact on agriculture. To this end, we sequenced, assembled, and annotated the genome of B. fusca. The total assembled genome size was 492.9 Mb with 19,417 annotated protein-coding genes. Using a comparative approach, we identified a putative expansion in the Chorion gene family, which is involved in the formation of the egg shell structure. Our analysis revealed high repeat content within the B. fusca genome, with LTR sequences comprising the majority of the repetitive sequence. We hope genomic resources will provide a foundation for future work aimed at developing an integrated pest management strategy to reduce B. fusca's impact on food security.


Assuntos
Genoma de Inseto , Genômica/métodos , Proteínas de Insetos/genética , Mariposas/genética , Animais , Produtos Agrícolas , Regulação da Expressão Gênica , Herbivoria , Transcriptoma , Zea mays
9.
BMC Genomics ; 19(1): 821, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442098

RESUMO

BACKGROUND: The three superfamilies of Long Terminal Repeat (LTR) retrotransposons are a widespread kind of transposable element and a major factor in eukaryotic genome evolution. In metazoans, recent studies suggested that Copia LTR-retrotransposons display specific dynamic compared to the more abundant and diverse Gypsy elements. Indeed, Copia elements show a relative scarcity and the prevalence of only a few clades in specific hosts. Thus, BEL/Pao seems to be the second most abundant superfamily. However, the generality of these assumptions remains to be assessed. Therefore, we carried out the first large-scale comparative genomic analysis of LTR-retrotransposons in molluscs. The aim of this study was to analyse the diversity, copy numbers, genomic proportions and distribution of LTR-retrotransposons in a large host phylum. RESULTS: We compare nine genomes of molluscs and further added LTR-retrotransposons sequences detected in databases for 47 additional species. We identified 1709 families, which enabled us to define 31 clades. We show that clade richness was highly dependent on the considered superfamily. We found only three Copia clades, including GalEa and Hydra which appear to be widely distributed and highly dominant as they account for 96% of the characterised Copia elements. Among the seven BEL/Pao clades identified, Sparrow and Surcouf are characterised for the first time. We find no BEL or Pao elements, but the rare clades Dan and Flow are present in molluscs. Finally, we characterised 21 Gypsy clades, only five of which had been previously described, the C-clade being the most abundant one. Even if they are found in the same number of host species, Copia elements are clearly less abundant than BEL/Pao elements in copy number or genomic proportions, while Gypsy elements are always the most abundant ones whatever the parameter considered. CONCLUSIONS: Our analysis confirms the contrasting dynamics of Copia and Gypsy elements in metazoans and indicates that BEL/Pao represents the second most abundant superfamily, probably reflecting an intermediate dynamic. Altogether, the data obtained in several taxa highly suggest that these patterns can be generalised for most metazoans. Finally, we highlight the importance of using database information in complement of genome analyses when analyzing transposable element diversity.


Assuntos
Variação Genética , Genoma/genética , Moluscos/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Animais , Evolução Molecular , Genômica/métodos , Moluscos/classificação , Filogenia , Especificidade da Espécie
10.
Curr Opin Virol ; 33: 81-88, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30114664

RESUMO

Among the virus world, Giant viruses (GVs) compose one of the most successful eukaryovirus families. By contrast with other eukaryoviruses, GV genomes contain a wide array of mobile genetic elements (MGEs) that encompass diverse, mostly prokaryotic-like, transposable element families, introns, inteins, restriction-modification systems and enigmatic classes of mobile elements having little similarities with known families. Interestingly, several of these MGEs may be beneficial to the GVs, fulfilling two kinds of functions: (1) degrading host or competing virus/virophage DNA and (2) promoting viral genome integration, dissemination and excision into the host genomes. By providing fitness advantages to the virus in which they reside, these MGEs compose a kind of molecular symbiotic association in which both partners benefit from the presence of each other's. Thus, protective effects provided by some of these MGEs may have generated an arm race between competing GVs in order to encode the most diverse arsenal of anti-viral weapons, explaining the unusual abundance of MGEs in GV genomes by a kind of ratchet effect.


Assuntos
Eucariotos/virologia , Evolução Molecular , Vírus Gigantes/crescimento & desenvolvimento , Vírus Gigantes/genética , Interações Hospedeiro-Parasita , Sequências Repetitivas Dispersas , Genes Virais
11.
BMC Genomics ; 18(1): 494, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28662628

RESUMO

BACKGROUND: Although transposons have been identified in almost all organisms, genome-wide information on mariner elements in Aphididae remains unknown. Genomes of Acyrthosiphon pisum, Diuraphis noxia and Myzus persicae belonging to the Macrosiphini tribe, actually available in databases, have been investigated. RESULTS: A total of 22 lineages were identified. Classification and phylogenetic analysis indicated that they were subdivided into three monophyletic groups, each of them containing at least one putative complete sequence, and several non-autonomous sublineages corresponding to Miniature Inverted-Repeat Transposable Elements (MITE), probably generated by internal deletions. A high proportion of truncated and dead copies was also detected. The three clusters can be defined from their catalytic site: (i) mariner DD34D, including three subgroups of the irritans subfamily (Macrosiphinimar, Batmar-like elements and Dnomar-like elements); (ii) rosa DD41D, found in A. pisum and D. noxia; (iii) a new clade which differs from rosa through long TIRs and thus designated LTIR-like elements. Based on its catalytic domain, this new clade is subdivided into DD40D and DD41D subgroups. Compared to other Tc1/mariner superfamily sequences, rosa DD41D and LTIR DD40-41D seem more related to maT DD37D family. CONCLUSION: Overall, our results reveal three clades belonging to the irritans subfamily, rosa and new LTIR-like elements. Data on structure and specific distribution of these transposable elements in the Macrosiphini tribe contribute to the understanding of their evolutionary history and to that of their hosts.


Assuntos
Afídeos/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Variação Genética , Genoma de Inseto/genética , Animais , Genômica , Proteínas de Insetos/genética , Filogenia
12.
Mob DNA ; 8: 5, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405230

RESUMO

BACKGROUND: Population genomic analysis of transposable elements has greatly benefited from recent advances of sequencing technologies. However, the short size of the reads and the propensity of transposable elements to nest in highly repeated regions of genomes limits the efficiency of bioinformatic tools when Illumina or 454 technologies are used. Fortunately, long read sequencing technologies generating read length that may span the entire length of full transposons are now available. However, existing TE population genomic softwares were not designed to handle long reads and the development of new dedicated tools is needed. RESULTS: LoRTE is the first tool able to use PacBio long read sequences to identify transposon deletions and insertions between a reference genome and genomes of different strains or populations. Tested against simulated and genuine Drosophila melanogaster PacBio datasets, LoRTE appears to be a reliable and broadly applicable tool to study the dynamic and evolutionary impact of transposable elements using low coverage, long read sequences. CONCLUSIONS: LoRTE is an efficient and accurate tool to identify structural genomic variants caused by TE insertion or deletion. LoRTE is available for download at http://www.egce.cnrs-gif.fr/?p=6422.

13.
BMC Genomics ; 16: 1061, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26666222

RESUMO

BACKGROUND: The Triatomine bug Rhodnius prolixus is a vector of Trypanosoma cruzi, which causes the Chagas disease in Latin America. R. prolixus can also transfer transposable elements horizontally across a wide range of species. We have taken advantage of the availability of the 700 Mbp complete genome sequence of R. prolixus to study the dynamics of invasion and persistence of transposable elements in this species. RESULTS: Using both library-based and de novo methods of transposon detection, we found less than 6 % of transposable elements in the R. prolixus genome, a relatively low percentage compared to other insect genomes with a similar genome size. DNA transposons are surprisingly abundant and elements belonging to the mariner family are by far the most preponderant components of the mobile part of this genome with 11,015 mariner transposons that could be clustered in 89 groups (75 % of the mobilome). Our analysis allowed the detection of a new mariner clade in the R. prolixus genome, that we called nosferatis. We demonstrated that a large diversity of mariner elements invaded the genome and expanded successfully over time via three main processes. (i) several families experienced recent and massive expansion, for example an explosive burst of a single mariner family led to the generation of more than 8000 copies. These recent expansion events explain the unusual prevalence of mariner transposons in the R. prolixus genome. Other families expanded via older bursts of transposition demonstrating the long lasting permissibility of mariner transposons in the R. prolixus genome. (ii) Many non-autonomous families generated by internal deletions were also identified. Interestingly, two non autonomous families were generated by atypical recombinations (5' part replacement with 3' part). (iii) at least 10 cases of horizontal transfers were found, supporting the idea that host/vector relationships played a pivotal role in the transmission and subsequent persistence of transposable elements in this genome. CONCLUSION: These data provide a new insight into the evolution of transposons in the genomes of hematophagous insects and bring additional evidences that lateral exchanges of mobile genetics elements occur frequently in the R. prolixus genome.


Assuntos
Elementos de DNA Transponíveis , Rhodnius/genética , Animais , Evolução Molecular , Transferência Genética Horizontal , Tamanho do Genoma , Genoma de Inseto , Filogenia
14.
Front Microbiol ; 6: 593, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136734

RESUMO

Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.

15.
Virology ; 466-467: 53-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24998348

RESUMO

Giant Viruses are a widespread group of viruses, characterized by huge genomes composed of a small subset of ancestral, vertically inherited core genes along with a large body of highly variable genes. In this study, I report the acquisition of 23 core ancestral Giant Virus genes by diverse eukaryotic species including various protists, a moss and a cnidarian. The viral genes are inserted in large scaffolds or chromosomes with intron-rich, eukaryotic-like genomic contexts, refuting the possibility of DNA contaminations. Some of these genes are expressed and in the cryptophyte alga Guillardia theta, a possible non-homologous displacement of the eukaryotic DNA primase by a viral D5 helicase/primase is documented. As core Giant Virus genes represent only a tiny fraction of the total genomic repertoire of these viruses, these results suggest that Giant Viruses represent an underestimated source of new genes and functions for their hosts.


Assuntos
Vírus de DNA/genética , Eucariotos/genética , Evolução Molecular , Genoma Viral/genética , Genoma/genética , Proteínas Virais/genética , Cromossomos/genética , Criptófitas/genética , Criptófitas/virologia , DNA Primase/genética , Vírus de DNA/classificação , DNA Viral/genética , Eucariotos/virologia , Transferência Genética Horizontal , Genômica , Interações Hospedeiro-Patógeno , Filogenia
16.
BMC Genomics ; 14: 700, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24118975

RESUMO

BACKGROUND: Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. RESULTS: In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. CONCLUSION: Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.


Assuntos
Biologia Computacional/métodos , Elementos de DNA Transponíveis/genética , Cadeias de Markov , Células Procarióticas/metabolismo , Archaea/genética , Bactérias/genética , Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Genoma Arqueal/genética , Genoma Bacteriano/genética , Sequências Repetidas Invertidas/genética , Metagenoma/genética , Dados de Sequência Molecular , Padrões de Referência , Reprodutibilidade dos Testes
17.
Curr Opin Virol ; 3(5): 595-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23896278

RESUMO

Nucleo cytoplasmic large DNA virus (NCLDV) superfamily forms a diverse group of viruses that infects a wide range of eukaryotic hosts (e.g. vertebrates, insects, protests, etc.). These viruses are characterized by a huge range in genome size (between 100kb and 1.2Mb), coupled with an extraordinary diverse genomic repertoire. Here I will review some recent results that shed light on the origin and genome evolution of these viruses, introducing the idea that these viruses evolved using a complex process of genomic accordion that imply successive steps of genome expansions (duplication and gene transfers) and genome reduction, in addition to movement and amplification of diverse mobile genetic elements.


Assuntos
Vírus de DNA/genética , Evolução Molecular , Genoma Viral , Tamanho do Genoma , Genômica
18.
Mol Biol Evol ; 29(11): 3529-39, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22734051

RESUMO

Haploid genomes greater than 25,000 Mb are rare, within the animals only the lungfish and some of the salamanders and crustaceans are known to have genomes this large. There is very little data on the structure of genomes this size. It is known, however, that for animal genomes up to 3,000 Mb, there is in general a good correlation between genome size and the percent of the genome composed of repetitive sequence and that this repetitive component is highly dynamic. In this study, we sampled the Australian lungfish genome using three mini-genomic libraries and found that with very little sequence, the results converged on an estimate of 40% of the genome being composed of recognizable transposable elements (TEs), chiefly from the CR1 and L2 long interspersed nuclear element clades. We further characterized the CR1 and L2 elements in the lungfish genome and show that although most CR1 elements probably represent recent amplifications, the L2 elements are more diverse and are more likely the result of a series of amplifications. We suggest that our sampling method has probably underestimated the recognizable TE content. However, on the basis of the most likely sources of error, we suggest that this very large genome is not largely composed of recently amplified, undetected TEs but may instead include a large component of older degenerate TEs. Based on these estimates, and on Thomson's (Thomson K. 1972. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J Exp Zool. 180:363-372) inference that in the lineage leading to the extant Australian lungfish, there was massive increase in genome size between 350 and 200 mya, after which the size of the genome changed little, we speculate that the very large Australian lungfish genome may be the result of a massive amplification of TEs followed by a long period with a very low rate of sequence removal and some ongoing TE activity.


Assuntos
Evolução Molecular , Peixes/genética , Genoma/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Animais , Austrália , Sequência de Bases , Biologia Computacional , Simulação por Computador , Tamanho do Genoma/genética , Genoma Humano/genética , Humanos , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
19.
Biol Direct ; 6: 19, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21414203

RESUMO

UNLABELLED: Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution. REVIEWERS: This article was reviewed by Jerzy Jurka, Jürgen Brosius and I. King Jordan. For complete reports, see the Reviewers' reports section.


Assuntos
Elementos de DNA Transponíveis/genética , Animais , Evolução Molecular , Genoma/genética , Humanos , Seleção Genética
20.
Intervirology ; 53(5): 354-61, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20551687

RESUMO

Giant viruses or nucleocytoplasmic large DNA viruses (NCLDVs) infect a wide range of eukaryotic hosts (including, algae, amoebae and metazoans) and show a very large range in genome size (between 100 kb and 1.2 Mb). Here we review some recent results concerning the extensive lateral gene transfer which appears to have occurred during NCLDV evolution. Current data suggest that giant viruses probably originated from a simple and ancient viral ancestor with a small subset of 30-35 genes encoding replication and structural proteins. A large array of lateral gene transfers from diverse cellular sources, including several families of mobile genetic elements, is probably responsible for the huge diversity of genome size and composition found in extant giant viruses.


Assuntos
DNA Viral/genética , Evolução Molecular , Recombinação Genética , Vírus/genética , Amoeba/virologia , Eucariotos/virologia , Transferência Genética Horizontal , Sequências Repetitivas Dispersas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...